

Forward Planning Long-Term Semester Planning

Academic Year: 2022-2023

Class: S7 Subject: Higher Level Mathematics Teacher: Ms Rebeca Morones No. Students: 5

Curriculum – Long-Term Planning 2022-2023

Date	Learning Objectives	Activities	Resources	Key Competences	Learning Outcomes / Assessment
September	Vector spaces	 review of vector spaces review of matrix properties Linear transformation defining the Kernel, range, nullity and rank. Matrix transformation, effects on the image after several transformations. Isomorphism 	- Geogebra - Worksheets - IB HL		
October - November	Taylor and Maclaurin	 Calculating the nth derivative Expansion of order n of a function Taylor and Maclaurin polynomials (apply T and M polynomials of order n with Lagrange remainder to a (n+1)-times differentiable function to give an approximate value of the functions) Determine Maclaurin polynomials of order n of functions obtained by sum, difference, product and/or composition of the following functions: 	- Geogebra - Worksheets	1, 2, 3, 5, 6	- Homework - Classwork - Test

		- $\frac{1}{1\pm x}$, $\ln(1\pm x)$, e^x , $\cos(x)$, $\sin(x)$ and $(1\pm x)^n$ with $x \in \{\frac{1}{2}, 2, 3, 4,\}$ - Inverse trigonometric functions			
November - December	Trigonometric and hyperbolic functions	 Inverse ingonometric functions (arcsine, arccosine and arctangent) and hyperbolic fucntions (hyperbolic sine, hyperbolic cosine and hyperbolic tangent): definition, domain, limits, whether they are odd or even, domain for which they are differentiable, derivatives, where they are increasing/decreasing, graphs. Families of functiones involving trigonometric or hyperbolic functions. Usual trigonometric and hyperbolic formulae and trasnformation: For (hyperbolic) sine, cosine and tangent: square law formulae, sum/difference identities, double angel identities, product indentities, t-formula, Linearize an expression involving trigonometric or hyperbolic functions. 	- FPP2 edexcel book.	1, 2, 3, 4, 5, 6	

		 Express: cos(nx) and sin(nx) as power of cos(x) and sin(x). cos h(nx) and sinh(nx) as power of cos h(x) and sinh(x). Equations solved by using these formulae or transformations. 		
January	Integration techniques	 Inverse functions based on primitives of arcsine, arccosine and arctangent functions. Division of polynomials ∫ P(x)/Q(x) where P and Q are polynomials functions including improper integrals. The polynomial Q has 1 or several single roots, has one unique multiple roots or is a quadratic function with a negative determinant. Use of recursive formulae such as ∫₀^{π/2} xⁿsin (x) dx and ∫₀^{+∞} xⁿe^{-x}dx 		

February	Differential equation	 Definition of differential equations, homogenous and non- homogeneous. Solve a first order and a second order homogeneous linear differential equation with constant coefficients. 	- Worksheets - Geogebra	1, 2, 3, 4, 5, 6, 7, 8	- Classwork - Homework
March	Partial differentiation	 Functions of two variables. First order partial derivatives Geometrical interpretations Higher order derivatives Euler's first theorem for homogeneous functions Differentials Differentiation of composite functions Directional derivatives-maxima, minima, saddle points. 	- Worksheets - Geogebra	1, 2, 3, 4, 5, 6, 7	- Homework - Classwork - Test
			- Geogebra - Worksheets	1, 2, 3, 4, 5, 6, 7, 8	- Homework - Classwork

March-April			- Worksheets. - Geogebra. - Bingo game.	1, 2, 3, 4, 5, 6	Homework/Classwork Test
-------------	--	--	---	------------------	----------------------------

* Link to 8 key competences:

- 1. Literacy (reading and writing)
- 2. Multilingualism
- 3. Mathematics, Science, Technology and Engineering
- 4. Digital
- 5. Personal, Social and Learning to Learn
- 6. Citizenship
- 7. Entrepreneurship
- 8. Cultural Awareness and Expression