

Forward Planning

Long-Term Semester Planning

Academic Year: 2022-2023

Class:S5Subject:Mathematics 6PTeacher:Mme BonhommeNo. Students:26

Curriculum – Long-Term Planning 2022-2023

Date	Learning Objectives	Activities	Resources	Key Competences*	Learning Outcomes / Assessment
2.5 weeks	Quadratics 1: The three forms of a quadratic function and its graph: $y = ax^2 + bx + c$ y = a(x - r)(x - s) $y = a(x - p)^2 + q$	 Determine the standard form from the general form by completing the square Determine the axis of symmetry and the coordinates of the vertex of a parabola, graphically and algebraically Calculate the zeros of a quadratic function and interpret them graphically. Solve problems leading to a quadratic equation including word problems 	Worksheets Geogebra Puzzles / games	1, 2, 3, 4, 5	Graded homework, tests (formative and sommative)
1 week	Introduction to radians	 Investigate two unit-systems to measure angles: degrees and radians Know and understand the trigonometric ratios for a set of standard angles in degrees and radians: 0°, 30°, 45°, 60° and 90° 0, π/6, π/4, π/3 and π/2 radians 	Worksheets	1,2,3,4	Graded homework, tests (formative and sommative)
2 weeks	Negative and rational indices	Calculate powers with negative and rational indices Understand the relationship between rational indices $\left(\frac{1}{n}, \frac{m}{n}\right)$ and radicals Use negative and rational indices to rewrite scientific formulae, e.g. $T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \left(\frac{l}{g}\right)^{\frac{1}{2}}$ or $l = g \left(\frac{T}{2\pi}\right)^{2}$	Worksheets Bingo	1,2,3,5,6	Graded homework, tests (formative and sommative)

		Convert between scientific notation (standard form) with positive and negative indices and decimals using a technological tool			ter Facet	
1.5 weeks	Probability laws	 Know the following probability rules and apply them to solve problems: 0 ≤ P(A) ≤ 1 P(Ā) = 1 - P(A) P(A ∪ B) = P(A) + P(B) - P(A ∩ B), P(A ∪ B) = P(A) + P(B) for mutually exclusive events 	Worksheets Bingo	1,2,3,5,6	Graded homework, tests (formative and sommative)	
		OCTOBER HOLIDAYS				
1 weeks	Conditional probability & independence	Understand the concept of conditional probability, notations $P_B(A)$ and $P(A B)$ Use information from Venn diagrams, tree diagrams, contingency tables and $P_B(A) = P(A B) = \frac{P(A \cap B)}{P(B)}$ to calculate conditional probability Understand the concept of independent events Use the formulae $P(A \cap B) = P(A) \cdot P(B)$ and $P_B(A) =$ P(A B) = P(A) to check if two events are independent	Worksheets Monty Hall problem	1,2,3,5,6	Graded homework, tests (formative and sommative)	
1 week	Simple programming	 Use a software to break down a problem into sub-problems, and write, test and execute a simple program Create a flow chart for basic algorithm Know how to assign labels to variables in a program Understand and apply different types of conditional instructions Understand and apply different types of computer loops and notions 	Worksheets, Castor informatique and Algorea competitions	1.2.3.4	Graded homework, tests (formative and sommative) Algorea competition (3 rounds) – throughout the year	
2 weeks		Revision & semester 1 exams				
CHRISTMAS HOLIDAYS						

2.5 weeksVectors in two dimensions:coordinate system and the dimension of a vector space of the a basis and a coordinate systemWorksheets, GeogebraGraded homework, test (formative and sommative)2.5 weeksExpress a vector as a linear combination of two given vectors that form a basis Show the bijection which exists between the set of vectors and the set of ordered pairs of real numbersWorksheets, Geogebra1.2,3,4,5,6Graded homework, test (formative and sommative)1.5 weeksExponential (growth) models and formulae $y = C \cdot a^x$ Investigate models that describe exponential growth and decay: • multiplication per (time) unit • growth factor: $a > 1$ and $0 < a < 1$ • standard model $y = C \cdot a^x$ Worksheets, GeogebraI.2,3,4,5,6,7,8Graded homework, test (formative and sommative)1.5 weeksMeasures of spread / Standard deviation their it using a technological tool Calculate for a small sample size ($n < d > 0$ and $- \sqrt{\sum_{i=1}^{i=n} \frac{x_i - x_i^2}{n}}$ or $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i - x_i^2}{n}}$ Know and use the impact of a linear transformation of data comparing data sets distributionsIntegration per comparison of a data of a standard deviations in medians and interpret irequency distributions with respect to their: • means and standard deviations • medians and interpret irequency distributions with respect to their:I.2,3,4,5,6Graded homework, test (formative and sommative)			Recognise linearly dependent and independent vectors, a basis, a			fter Facese
2.5 weeksVectors in two dimensions:Define a basis and a coordinate systemWorksheets, GeogebraGraded homework, tes (formative and sommative)2.5 weeksExpress a vector as a linear combination of two given vectors that form a basis Show the bijection which exists between the set of vectors and the set of ordered pairs of real numbersWorksheets, Geogebra1.2,3,4,5,6Graded homework, tes (formative and sommative)1.5 weeksExponential (growth) models and formulae $y = C \cdot a^x$ Investigate models that describe exponential growth and decay: • multiplication per (time) unit • growth factor: $a > 1$ and $0 < a < 1$ • standard model $y = C \cdot a^x$ Worksheets, GeogebraI.2,3,4,5,6,7,8Graded homework, tes (formative and sommative)1.5 weeksMeasures of spread / Standard deviationUnderstand the meaning of the standard deviation, interpret it and calculate it using a technological tool Calculate for a small sample size $(n \le 6)$ variance and standard deviation by hand, using one of the following formulas • $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n}}$ or $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n}} - \bar{x}^2$ Know and use the impact of a linear transformation of data Comparing data sets distributionsI.2,3,4,5,6Graded homework, tes (formative and sommative)2 weeksLinear transformation of data distributions $\circ = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n}}$ or $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n}} - \bar{x}^2$ Know and use the impact of a linear transformation of data o measures of sentel thendency and spread Compare and interpret frequency distributions with respect to their.I.2,3,4,5,6Graded homework, tes (formative and sommative)<			coordinate system and the dimension of a vector space			
weeksExpress a vector as a linear combination of two given vectors that form a basis Show the bijection which exists between the set of vectors and the set of ordered pairs of real numbersConstraintConstr	2.5	Vectors in two dimensions:	Define a basis and a coordinate system	Worksheets, Geogebra	1.2.3.4.5.6	Graded homework, tests
1.5 weeksShow the bijection which exists between the set of vectors and the set of ordered pairs of real numbersWorksheets, GeogebraGraded homework, tes (formative and sommative)1.5 	weeks		Express a vector as a linear combination of two given vectors that form a basis	.,_,,,,,,,	, ,-,, ,-,-	(formative and sommative)
1.5 weeksExponential (growth) models and formulae $y = C \cdot a^x$ Investigate models that describe exponential growth and decay: • multiplication per (time) unit • growth factor: $a > 1$ and $0 < a < 1$ • standard model $y = C \cdot a^x$ Worksheets, GeogebraI.2,3,4,5,6,7,8Graded homework, test (formative and sommative)1.5 weeks $y = C \cdot a^x$ Use technology to investigate the graphs of exponential growthWorksheets, GeogebraI.2,3,4,5,6,7,8Graded homework, test (formative and sommative)2 weeksMeasures of spread / Standard deviationUnderstand the meaning of the standard deviation, interpret it and calculate it using a technological toolInvestigate for a small sample size ($n \le 6$) variance and standard deviation by hand, using one of the following formulasFigure $a_1^2 - \bar{x}^2$ Figure $a_1^2 - \bar{x}^2 - \bar{x}^2 - \bar{x}^2$ Figure $a_1^2 - \bar{x}^2 - \bar{x}^2 - \bar{x}^2$ Figure $a_1^2 - \bar$			Show the bijection which exists between the set of vectors and the set of ordered pairs of real numbers			
1.5 weeksExponential (growth) models and formulae $y = C \cdot a^x$ • multiplication per (time) unit 			Investigate models that describe exponential growth and decay:			
1.5 weeksmodels and formulae $y = C \cdot a^x$ Standard model $y = C \cdot a^x$ Worksheets, GeogebraGraded homework, test (formative and sommative)1.5 weeks $y = C \cdot a^x$ Use technology to investigate the graphs of exponential growth $1,2,3,4,5,6,7,8$ Investigate the graphs of exponential growthSolve equations and inequalities from practical situations using a technological toolUnderstand the meaning of the standard deviation, interpret it and calculate it using a technological toolUnderstand the meaning of the following formulasMeasures of spread / Standard deviation $\sigma = \sqrt{\sum_{i=1}^{i=1} (\frac{x_i - x}{n})^2}$ measures of central tendency and spread Compare and interpret frequency distributions with respect to their.Worksheet, Geogebra $1,2,3,4,5,6$ Graded homework, test (formative and sommative)2 weeksLinear transformation of data distributions $\sigma = \sqrt{\sum_{i=1}^{i=1} (\frac{x_i - x}{n})^2}$ means and standard deviations \cdot means and standard deviations \cdot means and standard deviations \cdot means and interquartile rangesWorksheet, Geogebra $1,2,3,4,5,6$ Graded homework, test (formative and sommative)		Exponential (growth)	• multiplication per (time) unit • growth factor: $a \ge 1$ and $0 \le a \le 1$			
weeks $y = t \cdot u$ Geogenia $1, 2, 3, 4, 5, 6, 7, 8$ (formative and sommative)Use technology to investigate the graphs of exponential growthSolve equations and inequalities from practical situations using a technological toolIf $2, 3, 4, 5, 6, 7, 8$ (formative and sommative)Solve equations and inequalities from practical situations using a technological toolUnderstand the meaning of the standard deviation, interpret it and calculate it using a technological toolUnderstand the meaning of the following formulasMeasures of spread / Standard deviation• $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{(x_i - \bar{x})^2}{n}}$ or $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n} - \bar{x}^2}$ Worksheet, GeogebraI.2,3,4,5,6Linear transformation of data• means and standard deviations• means and standard deviations• means and standard deviations• I.2,3,4,5,6	1.5	models and formulae $x = C \cdot a^x$	• standard model $y = C \cdot a^x$	Worksheets,	1 7 2 4 5 6 7 9	Graded homework, tests
2 weeksMeasures of spread / Standard deviationUnderstand the meaning of the standard deviation, interpret it and calculate it using a technological tool Calculate for a small sample size ($n \le 6$) variance and standard deviation by hand, using one of the following formulasWorksheet, GeogebraGraded 	weeks	$y = c \cdot u$	Use technology to investigate the graphs of exponential growth	Geogeora	1,2,3,4,3,0,7,8	(formative and sommative)
2 weeksUnderstand the meaning of the standard deviation, interpret it and calculate it using a technological tool Calculate for a small sample size $(n \le 6)$ variance and standard deviation by hand, using one of the following formulasWeasures of spread / $standard deviation$ Standard deviationGraded homework, test (formative and sommative)2 weeksLinear transformation of data Comparing data sets distributions $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{(x_i - \bar{x})^2}{n}}$ or $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n} - \bar{x}^2}$ Worksheet, Geogebra1,2,3,4,5,6Graded homework, test (formative and sommative)			Solve equations and inequalities from practical situations using a technological tool			
$\begin{bmatrix} 2 \\ weeks \end{bmatrix}$ $\begin{bmatrix} Calculate for a small sample size (n \le 6) variance and standard deviation by hand, using one of the following formulas Measures of spread / Standard deviation \int Calculate for a small sample size (n \le 6) variance and standard deviation by hand, using one of the following formulas • \sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n}} or \sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n}} - \bar{x}^2 Know and use the impact of a linear transformation of data on measures of central tendency and spreadComparing data sets distributions • means and standard deviations• medians and interquartile ranges \int \sum_{i=1}^{i=n} \frac{x_i^2}{n} - \bar{x}^2 Know and use the impact of a linear transformation of data on measures of central tendency and spreadCompare and interpret frequency distributions with respect to their: • means and standard deviations• medians and interquartile ranges \int \sum_{i=1}^{i=n} \frac{x_i^2}{n} - \bar{x}^2$			Understand the meaning of the standard deviation, interpret it and calculate it using a technological tool			
$\begin{bmatrix} 2 \\ weeks \end{bmatrix}$ Measures of spread / Standard deviation $\begin{bmatrix} 2 \\ weeks \end{bmatrix}$ Linear transformation of data Comparing data sets distributions $\begin{bmatrix} 2 \\ weeks \end{bmatrix}$ Linear transformation of data Comparing data sets distributions $\begin{bmatrix} 2 \\ weeks \end{bmatrix}$ Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of spread / Standard deviations $\begin{bmatrix} 2 \\ weeks \end{bmatrix}$ Measures of spread / Linear transformation of data Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of spread / Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to their: $\begin{bmatrix} 0 \\ weeks \end{bmatrix}$ Measures of central tendency and spread Compare and interpret frequency distributions with respect to the formation of the form			Calculate for a small sample size $(n \le 6)$ variance and standard deviation by hand, using one of the following formulas			
2 weeksLinear transformation of dataKnow and use the impact of a linear transformation of data on measures of central tendency and spreadWorksheet, Geogebra1,2,3,4,5,6homework, test (formative and sommative)2 weeksComparing data sets distributions• means and standard deviations • medians and interquartile rangesWorksheet, Geogebra1,2,3,4,5,6homework, test (formative and sommative)		Measures of spread / Standard deviation	• $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{(x_i - \bar{x})^2}{n}}$ or $\sigma = \sqrt{\sum_{i=1}^{i=n} \frac{x_i^2}{n} - \bar{x}^2}$			Graded
weeks Comparing data sets Compare and interpret frequency distributions with respect to Geogebra Geogebra (formative and sommative) distributions • means and standard deviations • medians and interquartile ranges	2 weeks	Linear transformation of data	Know and use the impact of a linear transformation of data on measures of central tendency and spread	Worksheet,	1,2,3,4,5,6	homework, tests
distributions medians and standard deviations • medians and interquartile ranges		Comparing data sets	Compare and interpret frequency distributions with respect to their:	Geogebra		(formative and sommative)
medians and interquartile ranges		distributions	means and standard deviations			
			medians and interquartile ranges			
Compare histograms and box plots for two different distributions			Compare histograms and box plots for two different distributions			
FEBRUARY HOLIDAYS						

2.5 weeks	Scalar /dot product of two vectors, orthogonality	Define and calculate the scalar product of two vectors <i>Note: This concept allows to make calculations in plane and</i> <i>solid geometry, especially on parallelism and orthogonality</i> Investigate geometrical properties of the scalar product Define the scalar product of a vector with itself Define the magnitude of a vector Define the orthogonality of two vectors and use the properties of the scalar product Express the scalar product of two vectors in terms of their magnitudes and the cosine of the angle between them Use the scalar product to verify orthogonality Express a scalar product in an orthonormal basis Calculate the distance between two points, $AB^2 = \ \overrightarrow{AB}\ ^2 = \overrightarrow{AB}^2$	Worksheets, Geogebra	1,2,3,4,5,6,7	Graded homework, tests (formative and sommative)
2 weeks	Quadratics 2 : quadratic equations and inequalities	 Use factorisation to solve a quadratic equation Solve a quadratic equation by completing the square Apply the formula for the general solution of a quadratic equation Understand the relation between the coefficients and the nature of the solutions of the general equation by using the discriminant. Use graphs to find the values of x when f(x) < 0 and when f(x) > 0 Determine algebraically and geometrically the intersection of a straight line and a parabola 	Worksheets	1,2,3,4,5,6,7,8	Graded homework, tests (formative and sommative)

		Solve problems leading to a quadratic equation including word problems			ter Faces			
1 week	Lengths and distances in 3D objects	 Apply Pythagoras' Theorem and the intercept theorem to plane sections of solids Calculate the internal diagonal of a cube or cuboid, the edges of a pyramid or the height of a cone with particular angles Recognise and solve real problems which can be modelled with regular solids 	Worksheets, Geogebra	1,2,3,4,5,6	Graded homework, tests (formative and sommative)			
1.5 week	Periodic models Trigonometric functions	Investigate trigonometric functions $y = \sin x$, $y = \cos x$ and $y = \tan x$ and their expansion to domain \mathbb{R} Investigate $y = a \sin(b(x + c)) + d$ and explore the impact of each parameter Solve equations of the type: $3\cos^2(q) - \sin q - 1 = 0$						
	EASTER HOLIDAYS							
2 weeks	Applications of dot product: finding angles and side of triangles	Use and prove the following formulae for any triangle: $a^2 = b^2 + c^2 - 2bc \cos \alpha$ $\frac{a}{\sin \alpha} = \frac{b}{\sin b} = \frac{c}{\sin c}$ Area $= \frac{1}{2}bc \sin \alpha$ Apply the formulae to determine angles and sides of triangles, including real life problems Know and use (only with numerical values of angles) formulae of the type $\cos(a \pm b)$, $\sin(a \pm b)$, $\sin(2a)$, $\cos(2a)$	Worksheets, Geogebra	1,2,3,4,5,6,7,8	Graded homework, tests (formative and sommative)			
1.5 weeks	Introduction to logarithms	Understand the concept of logarithm with a positive integer base <i>Note: logarithms should be introduced from powers</i>	Worksheets, Geogebra	1,2,3,4,5,6	Graded homework, tests (formative and sommative)			

		 Use the basic properties of indices and logarithms with a positive integer base Solve simple exponential and logarithmic equations of the type: 2^x = 4^{2x+1} log(3x) = log(2x + 9) log₃ x + log₃ 7 = log₃ 49 Check the answers in the original equations 			lier Facel
1.5 weeks	Sampling & Inference	 Recognise populations and random samples in everyday life situations and explain the difference between the two Know that different samples will show variation Use a digital tool to simulate statistical sampling and interpret the results Know that statistical inference concerns making claims about a population based on a sample and know that we can never be sure about these types of inferences Generalise findings from a sample to an underlying population, considering the uncertainty of these generalisations Know the main elements of the statistical enquiry cycle, i.e., problem definition, data collection plan, data collection, data analysis, conclusion 	Worksheets, Geogebra	1,2,3,4,5,6,7,8	Graded homework, tests (formative and sommative)

* Link to 8 key competences:

- 1. Literacy (reading and writing)
- 3. Mathematics, Science, Technology and Engineering
- 5. Personal, Social and Learning to Learn
- 7. Entrepreneurship

2. Multilingualism

- 4. Digital
- 6. Citizenship
- 8. Cultural Awareness and Expression

Notes :

- The mathematics syllabus states "The European Schools' syllabuses seek to develop all of these key competences in pupils. Key competences are that general that we do not mention them all the time in the Science and Mathematics syllabuses".
- A self-assessment "Checklist" is available on myschool detailing the competencies and prior knowledge for each chapter.