

Forward Planning

Long-Term Semester Planning

Academic Year: 2020-2021

Class: S4

Subject: Physics

Teacher: Erazmus

No. Students: 27

Curriculum – Long-Term Planning 2020-2021

Date	Objectives/ Connaissances	Activités	Resources	8 Compétences clés *	Evaluation
1/9/20 - 16/10/20 2/11/20 - 18/12/20	Understand that electricity is a versatile means of transferring energy; Recognize the Coulomb as the SI unit for measuring the quantity of charge; Determine current by calculating charge per unit time; Recognize voltage as energy per coulomb; Calculate potential difference or current or resistance using Ohm's Law; Apply the priniciple of conservation of current to calculate currents within circuits; Determine how voltage is divided in circuits; Calculate resistance, current & voltage in series and parallel circuits; Understand the rules of current, potential difference & total resistance in circuits; Construct circuits from a schema and measure current & voltage; Calculate power & energy: power=voltage x current; energy = power x time;	Laboratory to calculate resistance of components using measurements of current & voltage; Laboratory to sketch UI graphs for Ohmic & non-Ohmic components; Design circuits using two or more switches which can govern the circuit alternatively as found on staircases; Build and explain circuits with sensors & bulbs or resistors;	Textbooks: Edexcel IGCSE Physics Brian Arnold, Steve Woolley, Penny Johnson PEARSON Education Ltd. Cambridge IGCSE Physics Coursebook David Sang Complete Physics for IGCSE Stephen Pople OXFORD Physics for You Keith Johnson Nelson Thornes Ltd.	1, 3, 5, 6, 8.	Notebook; Homework; Quiz(s); Test(s); Lab Reports; Participation individually and in lab groups; BTESTs;

		Recognize commercial units of		Revision Guides &		
		energy as kWh;		Workbooks:		
		Understand safety measures	Identify which appliance in	E-111000E		
		used in homes (isolation, earth	the hohome uses the most	Edexcel IGCSE		
		ground, fuses,);	energy in a week;	Physics		
		01		Steve Woolley		
		Sketch magnetic field diagram		PEARSON Education		
		of a solenoid or magnet and		Limited		
		describe similarities;		Limited		
		Explain qualitatively how an		0 1 1 10005		
		electric motor Works;		Cambridge IGCSE		
		oloculo illoto. Trollo,		Physical Science		
		Understand that a varying		Physics Workbook		
		magnetic field in a coil induces		David Sang		
		an electric current (this		David Gailig		
		phenomena is used in		AOA Dhyaica Davisian		
		generators);		AQA Physics Revision		
				Guide		
		Recognize motors & generators		Pauline Anning		
		as energy conversion devices;		OXFORD		
		Identify examples of uses of				
		magnetism and the motor		Edexcel International		
		effect;		GCSE Physics		
		Circui,		_		
		Define the quantities (s, v, a)	Make position-time graphs;	Practice Book		
4/1/2	21 –	and distinguish between vector	graphe,	Nick England, Nicky		
19/2	2/21	& scalar terms;		Thomas		
			Make velocity-time graphs	Hodder Education		
		Calculate movements with	using ticker-tape timer for			
		constant speed or constant	freefall acceleration or on an	101 CCCE (0.1)		
		acceleration;	inclined plane;	AQA GCSE (9-1)		
		51.0		Physics Revision		
		Distinguish between	Construct & analyse s(t) and	Workbook Higher		
		instantaneous and average	v(t) graphs to get information	PEARSON Education		
		velocities or speed;	and make calculations using	Limited		
		Relate freefall acceleration to	gradients and key points on			
		the force of gravity;	the graph;			
		the loice of gravity,	Laboratory to measure "g";			
			Laboratory to inicadare g ,			
	1		1	I	ı	

8/3/21 – 23/4/21	Understand that forces can: - change speed - change direction of motion - deform materials			
	Force as a vector: -sum of forces in 1 dimension -sum of forces in 2 dimensions	Draw vectors & vector sums graphically only;		
	Examples of common forces;	Laboratory to investigate Hooke's Law;		
	Calculate magnitudes of weight, mass & field strength;	riodic o Law,		
	Describe situations that give rise to a normal force;			
	Understand and apply Newton's Laws of motion;	Determine the resultant force, then calculate the		
	Mass as a measure of inertia;	acceleration of a body; Demontrations with an air-		
	Calculate velocity at a given time during a uniform acceleration:	track;		
	Understand the circumstances which result in the terminal velocity of a body;	Investigate how air (or water) resistance changes the speed of the object moving through it;		
10/5/21 – 5/7/21	Characteristics of an oscillating source;			
	Define and apply the the concepts of frequency, period & amplitude;	Investigate the factor(s) affecting the period of a pendulum;		
	Identify a wave as energy in motion due to an oscillating source;			
	Describe the characteristics of waves and make calculations with frequency, velocity &			

wavelength;			
Distinguish between transverse & longitudinal waves and provide examples of each;			
Apply the characteristics of waves to sound;	Laboratory to calculate the speed of sound;		
Identify the audible range of the human ear;	Investigate the frequency of a vibrating string as a function of the attached mass (tension);		
Explain qualitatively how a musical instrument makes sound & what determines the characteristics of the sound;	Demonstration of wave characteristics using a ripple tank;		
State examples of similar waves to sound (e.g. sonar, ultrasound or shock waves);			
Identify regions of the electromagnetic spectrum, relating them to frequency & wavelength;			
Discuss uses and applications of regions of the electromagnetic spectrum;			

*Lien vers les 8 compétences clés:

- Littératie (lecture et écriture)
 Multilinguisme
- 3. Mathématiques, science, technologie et ingénierie
- 4. Numérique
- 5. Personnelles, sociales et capacité d'apprendre à apprendre
- 6. Citoyenne
- Entrepreneuriale
 Sensibilité et expression culturelles