

Forward Planning

Long-Term Semester Planning

Academic Year: 2020-2021

Class: Subject: Teacher: No. Students: S5 Physics Erazmus 22

Curriculum – Long-Term Planning 2020-2021

Date	Objectives/ Connaissances	Activités	Resources	8 Compétences clés *	Evaluation
1/9/20 – 16/10/20	Use the concept of work to calculate change in energy; Calculate kinetic & gravitational potential energy; Calculate the stopping distance of a car; Application of the law of conservation of energy.	Lab measuring the average force of friction acting on a car by measuring the distance travelled and knowing the GPE; Discuss exchanges of energy and ways to reduce energy losses, for practical situations.	Textbook: GCSE physics; Tom Duncan & Heather Kennett (Chapters 24, 33); Classwork sheets.	1, 3, 5, 6, 8.	Notebook; Homework; Quiz(s); Test; Lab report; Participation both individual and in small lab groups; BTESTS.

	conservation of energy.			
4/1/21 – 19/2/21	Describe momentum as the quantity of motion of a body and calculate its momentum; Identify objects within a closed system to which conservation of momentum applies; Describe interactions between objects where two concepts are required to predict the outcomes: momentum and energy.	Compare the momenta of various objects: low mass moving quickly like a bullet and large mass moving slowly like a bowling ball; Consider elastic collisions (e.g. billiard balls) and inelastic collisions (e.g. kinetic energy converted into deformation energy in a car accident.	Textbook: GCSE physics; Tom Duncan & Heather Kennett (Chapters 32); Classwork sheets.	1, 3, 5, 6, 8.
8/3/21 – 23/4/21	Describe the charge, mass & dimensions of electrons, protons & neutrons and how they contribute to the structure of the atom; Identify the fundamental forces and qualitattively describe their role in the structure of the atom; Apply the notation ${}^{A}_{Z}X$ to describe the structure of the nucleus; Identify the decay product when an atom decays with alpha or	Discussion of how the numbers of neutrons and protons determine the stability of the nuclei they form; Discussion of the discovery of nuclear radiation and the sub- atomic particles;	Textbook: GCSE physics; Tom Duncan & Heather Kennett (Chapters 58, 59); Classwork sheets.	1, 3, 5, 6, 8.

	beta radiation; Explain the emission of gamma radiation as electromagnetic energy from the nucleus; Determine the activity, or amount of remaining mass, of a radioactive isotope after a few half- lives;				
10/5/21 – 5/7/21	Discuss the risk of radiation qualitatively in terms of activity, energy of radiation and time of exposure; State that when nuclear reactions release energy, the mass of the products is less than that of the reactants; Identify fission and fusion from reaction equations and construct balanced reaction equations.	Research examples of medical imaging and/or treatment or industrial applications that use ionising radiation; Research different energy sources with respect to need, time for construction, resources, environment and health risks; Advantages and disadvantages of fusion in relation to fission (e.g. nuclear waste, fusion temperature).	Textbook: GCSE physics; Tom Duncan & Heather Kennett (Chapters 58, 59); Classwork sheets.	1, 3, 4, 5, 6, 8.	

* Lien vers les 8 compétences clés:

- 1. Littératie (lecture et écriture)
- 2. Multilinguisme
- 3. Mathématiques, science, technologie et ingénierie
- 4. Numérique
- 5. Personnelles, sociales et capacité d'apprendre à apprendre
- 6. Citoyenne
- 7. Entrepreneuriale
- 8. Sensibilité et expression culturelles